
 

Int. J. of Applied Mechanics and Engineering, 2019, vol.24, No.2, pp.245-258 
DOI: 10.2478-ijame-2019-0016 

 
AN UNSTEADY FLOW AND MELTING HEAT TRANSFER OF A 

NANOFLUID OVER A STRETCHING SHEET EMBEDDED IN A POROUS 
MEDIUM 

 
K. GANESH KUMAR* 

Department of Mathematics, SJM Institute of Technology College 
Chitradurga-577502, Karnataka, INDIA 

E-mail: ganikganesh@gmail.com 
 

B.J. GIREESHA and N.G. RUDRASWAMY 
Department of Studies and Research in Mathematics, Kuvempu University 

Shankaraghatta-577 451, Shimoga, Karnataka, INDIA 
 

M.R. KRISHNAMURTHY 

Department of Mathematics, JNN Collage of Engineering 
Shimoga, Karnataka, INDIA 

 
 

An unsteady flow and melting heat transfer of a nanofluid over a stretching sheet was numerically studied by 
considering the effect of chemical reaction and thermal radiation. The governing non-linear partial differential 
equations describing the flow problem are reduced to a system of non-linear ordinary differential equations using 
the similarity transformations and solved numerically using the Runge–Kutta–Fehlberg fourth–fifth order 
method. Numerical results for concentration, temperature and velocity profiles are shown graphically and 
discussed for different physical parameters. Effect of pertinent parameters on momentum, temperature and 
concentration profiles along with local Sherwood number, local skin-friction coefficient and local Nusselt number 
are well tabulated and discussed.  
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1. Introduction 
 
 Flow of an incompressible fluid past a stretching surface is one of the thrust areas of current 
research in the field of fluid dynamics due to its possible applications in many manufacturing and 
metallurgical processes of modern industries, such as aerodynamic, extrusion of plastic sheets, continuous 
stretching of plastic films and artificial fibers, cooling of metallic plate, hot rolling, polymeric extrusion, 
continuous casting, drawing of continuous filaments through quiescent fluids and annealing and tinning of 
copper wires, etc. The studies on boundary layer flow past a stretching surface were initiated by Sakiadis 
[1], who analyzed the problem of boundary layer flow on continuous surfaces which was later developed 
by Crane [2], by obtaining a closed-form solution for a stretching sheet whose velocity is proportional to 
the distance from the slit. Furthermore, various flow problems past stretching sheet in the related areas 
were discussed in [3-9]. 
 It is well known that conventional heat transfer fluids, including oil, water, and ethylene glycol 
mixture are poor heat transfer fluids. Since the thermal conductivity of these fluids plays an important role 
on the heat transfer coefficient between the heat transfer medium and the heat transfer surface, an innovative 
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technique for improving heat transfer by using ultra-fine solid particles in the fluids has been used 
extensively during the last several years. Nanofluid, a term introduced by Choi [10], is a base fluid with 
suspended metallic nano-scale particles called nanoparticles. The characteristic feature of nanofluids is 
thermal conductivity enhancement, a phenomenon observed by Masuda et al. [11]. This phenomenon 
suggests the possibility of using nanofluids in advanced nuclear systems. Nanofluids with such relatively 
high thermal conductivities have attracted enormous interest from researchers due to their potential in 
enhancement. Buongiorno [12] found that the Brownian diffusion and the thermophoresis effects are the 
most important and reported conservation laws for nanofluids. In the presence of these two effects Khan 
and Pop [13] studied the laminar fluid flow problem resulting from the stretching of a flat surface in a 
nanofluid. An additional information on stretching sheet problem could also be found in the cited works 
[14, 15]. 
 Surprisingly, the problem of coupled heat and mass transfer accompanied by melting effect in porous 
media has received considerably less attention despite of its importance in the study of geothermal systems, 
spreading of chemical pollutants generated within the earth’s crust, melting of permafrost, creation of ice 
slurries and the extraction of oil. Especially, in the permafrost research and frozen ground thawing, the 
melting effect plays an important role. According to the analysis of Walker [16], the phenomenon of 
permafrost degradation in Arctic Alaska is very critical due to global warming and this result accelerates the 
greenhouse effect. In two recent studies Epstein and Cho [17] and Kazmierczak et al. [18] gave a theoretical 
interpretation over forced and natural convection, respectively, on the phenomenon of melting from a flat 
plate embedded in porous media. Yen and Tien [19], Hayat et al. [20], Gorla et al. [21], Makinde et al. [22] 
and Kumar et al. [23] have also reported problems of melting process past stretching surfaces by considering 
aspects on stagnation point flow, viscous dissipation on steady/unsteady stretching surfaces/cylinders. But 
the problems of melting heat transfer past a stretching surface has been neglected in the region of a porous 
medium with nanoparticles in action. 
 However, the problem of an unsteady flow near a stagnation point of a nanofluid with the effect of 
melting heat transfer and thermal radiation in the region of a porous medium past a stretching surface has 
remained unsolved. Thus the purpose of this work is to provide a numerical method that can be used to 
analyze the problems of convective flow of a nanofluid near a stagnation point with heat and mass transport 
phenomena combined with melting process and thermal radiation in a porous medium and hence its behavior 
in the boundary layer. 
 
2. Formulation of the problem 
 
 Consider a steady, incompressible, laminar, two-dimensional boundary layer flow of an 
incompressible nanofluid past a stretching sheet coinciding with the plane y 0  and the flow has been 

confined to y 0 . The flow is generated, due to non-linear stretching of the sheet, caused by the 

simultaneous application of two equal and opposite forces along the x  axis. It is assumed that the velocity 
( , )U x t  of the flow external to the boundary layer is proportional to a distance from the stagnation point as 

shown, i.e.,  , 
bx

U x t
1 at




 and the velocity of the stretching sheet is  w
cx

U x
1 at




, where b is a positive 

constant and c  is a stretching rate. It is also assumed that the temperature of the melting surface be mT , 

while the temperature in the free-stream condition is 1T  and 1 mT T  is the nanoparticle volume fraction at 

the stretching surface and the ambient values of T  and C  are denoted by 1T  and 1C , respectively.  
 The governing equations for this investigation are based on the balance laws of mass, linear 
momentum, energy and nanoparticles volume fraction modified to account for the presence of the magnetic 
field and thermal radiation effects near a stagnation point along with the effect of melting heat transfer in the 
region of the porous medium. These can be written as 
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 The respective boundary conditions are given by 
 
   , , ,     w m wu U x t T T C C        at     ,y 0  

   (2.5)  
  ,  ,    ,    u 0 v 0 T T C C         as    ,y    
 
and     
 

    ( , )1 s m 0
y 0

T
k c T T v x 0

y 

 
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 (2.6) 

 
where   is the fluid density, k  is the porous term, 1  is the latent heat of the fluid and pc  is the specific 

heat at constant pressure, sc  is the heat capacity of the solid surface. Equation (2.6) states that the heat 
conducted to the melting surface is equal to the heat of melting plus the sensible heat required to raise the 
solid temperature 0T  to its melting temperature. 

 Employing the generalized Bernoullis equation, in the free stream  , 
bx

U x t
1 at




, one gets 

 

  
2
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 Using the Rosseland approximation for radiation, radiation heat flux is expressed as  
 

  
*

*

4

r
4 T

q
y3k
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 (2.8) 

 

where *  and *k  are the Stefan-Boltzman constant and the mean absorption co-efficient, respectively. The 

temperature differences within the flow are assumed to be sufficiently small so that 4T  may be expressed as 
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a linear function of temperature  T  using a truncated Taylor series about the free stream temperature 1T  and 
by neglecting higher-order terms, we get 
 

  .4 3 4T 4TT T    (2.9) 
 
 The following set of similarity transformations is now introduced to recast the governing partial 
differential equations into a set of ordinary differential equations 
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where    is the stream function defined in the usual way as u
y


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satisfies the continuity Eq.(2.1). By using this definition, we obtain  
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 On substituting Eqs (2.7) to (2.11) in Eqs (2.2) to (2.6) the following nonlinear ordinary differential 
equations are obtained 
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 The associated boundary conditions are given by  
 
           ,  Pr , ,  f 1 f M 0 0 0                  at     0  , 

 
       ,    ,  f A 1 1              as              (2.15) 

 

where a prime denotes the differentiation with respect to  , 
b

A
c

  is the stretching parameter, 
2
0B

Q
c





 is 

the magnetic parameter, 
   

Ra g w
x 2

1 C T T f

c x

    
  is the local Rayleigh number,

   
   

p f

g w

g C C
Nr

1 C T T f

 

  

  


   
 is the buoyancy ratio, 

 1k b
k 1 at





 is the porosity parameter, 

*

*

34 T
R

kk


  



An unsteady flow and melting heat transfer of a nanofluid ...  249 

is the radiation parameter, Pr
m





 is the Prandtl number, 
 T wD T T

Nt
T





 



 is the thermophoresis 

parameter, 
 B wD C C

Nb  



 is the Brownian motion parameter, Le

BD


  is the Lewis number, 0

a
A

c
  

is a parameter that measures the unsteadiness, 
 2 wk C C

 


 is the chemical reaction parameter and M  

is the dimensionless melting parameter which is defined as 
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 Here the melting parameter is a combination of the Stefan numbers 
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of special significance for this type of flow and heat transfer situation are the skin-friction coefficient ( )fc  

the local Nusselt number (Nu )x  and the local Sherwood number (Sh )x . 
 These physical parameters can be defined in dimensionless form as 
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 signifies the local Reynolds number. 

 
3. Numerical method 

 
 Equations (2.12) to (2.14) together with the boundary conditions (2.15) form a set of highly non-
linear ordinary differential equations. In order to solve these equation numerically symbolic software Maple 
has been adopted, which is very efficient in using the well-known RKF-45 order method. In accordance with 
the boundary layer analysis, the boundary conditions at infinity were replaced by 6  . Table 1 shows s 
comparison of the current solution with the existing solutions. We found a better agreement of the current 
result with the published work under specific limited cases.   
 
Table 1. Comparison of the numerical solutions for the steady-state flow. 
 

 
Nb  

 
Nt  

Mustafa et al. [24] present studies 
Nu x  Sh x  Nu x  Sh x  

0.1 0.1 0.5372 0.2244 0.53727 0.22445 

0.5  0.4351 0.5275 0.43514 0.52756 

0.5 0.5 0.3861 0.3471 0.38615 0.34718 

 1 0.3343 0.1888 0.33431 0.1889 
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Table 2.  Wall temperature gradient '( )0 , ''( )f 0  and '( )0  for the case of assisting flow for different 

values of the parameters Pr, Le, , , , , 0Nt Nb Nr M A , , , , 1Q R k and  . 
 

Pr Nb  Nt  M  R  Q  Nr  Le 1k  0A    ''f 0  '( )0  '( )0  

0 3.2 0.5 0.5 0.5 0.5 0.1 0.45 10 0.5 0.2 0.5 -1.1106 1.3737 0.0717 
0.1            -1.1019 1.3948 0.0722 
0.3            -1.0091 1.4639 0.0716 

 2           -1.1099 0.8385 0.3859 
 2.5           -1.1019 0.2694 1.0616 
 3.2           -1.0919 1.3948 0.0722 
  0.3          -1.1068 1.22403 -0.0595 
  0.5          -1.0919 1.3948 0.0722 
  1          -1.0621 1.7901 0.0769 
   0.5         -1.1010 1.2347 0.4275 
   0.5         -1.0919 1.3948 0.0722 
   0.8         -1.0783 1.6633 -0.6105 
    0.5        -1.0919 1.3948 0.0722 
    1        -1.0608 1.0639 0.0792 
    1.5        -1.0412 0.8708 0.0348 
     0.5       -1.0919 1.3948 0.0722 
     1       -1.1191 1.0509 0.4109 
     1.5       -1.1374 0.8428 0.6303 
      0.1      -1.0919 1.3948 0.0722 
      0.5      -1.2342 1.3260 0.0708 
      1      -1.3922 1.2517 0.0673 
       0.45     -1.0919 1.3948 0.0722 
       1     -1.0576 1.4387 0.0708 
       2     -0.9959 1.5055 0.0677 
        10    -1.0919 1.3948 0.0722 
        15    -1.0815 1.4808 0.1414 
        20    -1.0755 1.5322 0.1560 
         0.5   -1.0919 1.3948 0.0722 
         1   -1.3042 1.2755 0.0694 
         1.5   -1.4896 1.1670 0.0614 
          0  -0.8439 1.6719 0.0792 
          0.2  -0.9474 1.4712 0.0718 
          0.5  -1.1130 1.0202 0.0324 
           0 -0.9318 1.5989 0.1538 
           0.5 -0.9474 1.4712 0.0718 
           1 -0.9598 1.3745 0.0001 

 
4. Results and discussion 
 
 Figures 1-26 represent typical numerical results based on the solution of Eqs (2.12) - (2.14). These 
results are obtained to illustrate the influence of the magnetic field, melting parameter, Brownian motion 
parameter, thermophoresis parameter, Lewis number, radiation parameter and porosity parameter on 
velocity, temperature and concentration profiles. 
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Fig.1. Influence of the magnetic field ( )Q  on velocity profile. 
 

 The velocity profile for different values of the magnetic parameter is shown in the Fig.1. It is 
observed that an increase in the magnetic field strength decreases the velocity of the nanofluid. This is due to 
the fact that application of the magnetic field adds a resistive term to the momentum equation which results 
in the reduction in the velocity of the nanofluid, thereby the momentum boundary layer thickness is 
decreased.  

 

 
 

Fig.2. Effect of the thermal radiation parameter on ( )R  temperature profile. 
 

 Figure 2 demonstrates the influence of the thermal radiation parameter on temperature profile. It is 
found that an increase in R  leads to a decrease in the conduction effect and the thermal boundary layer. 
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Fig.3. Effect of the bouyancy ratio ( )Nr  on temperature profile. 
 

 Same features could be seen in the boundary region for the increase of the buoyancy ratio ( )Nr  
parameter. It is observed that as the buoyancy ratio increases temperature of the nanofluid in the boundary 
influences in building thermal boundary layer of the nanofluid is as shown in Fig.3. 
 

 
 

Fig.4. Effect of the melting parameter ( )M  on temperature profile. 
 

 Figure 4 reveals the temperature distribution for different values of the melting parameter ( )M . It is 
observed that increase in the values of melting parameter causes a decrease in the temperature distribution. 
This behavior means that, a small melting parameter disturbance in the free stream temperature T  

approximately equal to the surface temperature mT  i.e., mT T  which implies an enhancement in the 
temperature distribution. 
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Fig.5. Effect of the porosity parameter ( )1k  on velocity profile. 
 

 Figure 5 shows the influence of the porosity parameter on velocity profile. The momentum boundary 
layer is affected by the porosity parameter. It is seen that the thickness of the momentum boundary layer 
decreases with an increase in the porosity parameter. This is due to the presence of porous medium which 
increases the resistance to the flow causing a decrease in the fluid velocity. As a result, velocity in the 
boundary layer decreases. 
 From the definition of Prandtl number it is quite obvious that, a large Pr has a lower thermal 
diffusivity. Due to the effect of the melting parameter, the thermal boundary layer thickness increases by an 
increasing values of Pr and also enhances the thermal boundary layer thickness as shown in Fig.6. 

 

 
 

Fig.6. Effect of the Prandtl number (Pr) on temperature profile. 
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Fig.7. Effect of the unsteady parameter ( )0A  on velocity profile. 
 

 
 

Fig.8. Effect of the unsteady parameter ( )0A  on temperature profile. 
 

 Influence of the unsteady parameter on velocity and temperature profiles are shown in Figs 7 and 8. 
It is clear that, an increase in the unsteady parameter decreases the momentum and thermal boundary layer 
thicknesses resulting in a reduction of both the velocity and temperature. This shows an important fact that 
the rate of cooling is much faster for higher values of the unsteady parameter whereas, it may take longer 
time in steady flows. 
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Fig.9. Effect of chemical reaction   on concentration profile. 
 
 Figure 9 shows the effect of chemical reaction on the nanoparticle concentration profile. It is seen 
that the nanoparticle volume fraction of the fluid decreases with an increase in chemical reaction parameter. 
In particular, the nanoparticle volume fraction of the fluid gradually changes from a higher value to a lower 
value only when the strength of the chemical reaction is higher than the thermophoresis particle deposition 
 Nt . For nanoparticle volume characteristics mechanism, an interesting result is seen with the large distortion 
of the nanoparticle volume field. All these physical behaviors are due to the combined effects of the strength 
of the Brownian motion and thermophoresis particle deposition. 

 

 
 

Fig.10. Effect of the Lewis number (Le) on concentration profile. 
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 It is noticed from Fig.10 that the presence of the Lewis number increases the concentration profile 
corresponding to an increase in boundary layer thickness. This is probably due to the fact that mass transfer 
rate decreases as the Lewis number increases.  
 
5. Conclusion 
 
 The problem of stagnation point flow of a nanofluid with the effect of melting heat transfer and 
thermal radiation in a porous medium has been studied with the help of the Runge-Kutta-Fehlberg-45 
method and the outcomes of the result are listed below: 

 the thermal boundary layer thickness and the temperature is found to decrease as the melting 
parameter increases; 

 it is found that the temperature profile is an increasing function in view of Le; 
 velocity of the nanofluid at the boundary decreases for the increase in the porosity parameter; 
 increase in the value of the unsteady parameter decreases both the temperature and velocity of the 

fluid in the boundary; 
 the concentration boundary layer is significantly suppressed by  . 

 
Nomenclature  
 
 A  stretching parameter 
 0A   unsteadiness parameter 

 b  positive constant 
 c  stretching rate 
 fc   skin-friction coefficient 

 
 f mc T T 


  Stefan number for the liquid phase 

 sc   heat capacity of the solid surface  

 
 s m 0c T T


  Stefan number for the solid phases 

 k   porous term 

 *k   mean absorption co-efficient 
 1k   porosity parameter 

 Le  Lewis number 
 M  melting parameter 
 Nb  Brownian motion parameter 
 Nr  buoyancy ratio 
 Nt  thermophoresis parameter 
 Nu x   local Nusselt number 

 Pr  Prandtl number 
 R  radiation parameter 
 Ra x   local Rayleigh number 

 Rex   local Reynolds number 

 Sh x   local Sherwood number 

 T  temperature of the fluid phase ( )K  

 mT   melting surface 

 mT   temperature of the melting surface ( )K  

 0T   melting temperature 
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 1T   temperature in the free-stream condition 

 T   ambient fluid temperature ( )K  

 ,  u v   velocity component  

 Q   magnetic parameter 

 rq   radiation heat flu 

 x  coordinate along the plate ( )m  

 y   coordinate normal to the plate ( )m  

    chemical reaction parameter 

 1   latent heat of the fluid 

    fluid density 

 *   Stefan-Boltzman constant 
     stream function 
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